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OCTAVE-BAND HIGH PRECISION BALANCED PIO!lULATO?l
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ABSTRACT Here i=-1 to 1 has been used to desig-
nate the input control signal, a cur-

This paper describes an octave bandwidth rent or digital word for example, that
component that closely approximates an selects the various modulator states.
ideal hi-phase linear modulator at mi~
crowave frequencies. PIN diodes in a
balanced configuration of hybrid coup-
lers were combined to realize the com-
ponent in a microstrip circtiit. Phase
errors of 2 degrees or less were
achieved over an octave band for a
hi-phase modulator application. The
modulator was also used to form a fre-
quency translator with a minimum car-
rier suppression of 30dB and sideband
suppression of 20dB over the 4-1OGHZ
frequency band.
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1. INTRODUCTION

An ideal hi-phase linear modulator Per-
forms the mathematical operation of
multiplication between a modulating sig-
nal and an RF carrier; it thus func-
tions as a basic RF signal processing
component with, a wide range of applica-
tions . Both phase and amplitude modu-
lation are possible, and, by changing
the phase at a, steady Pate, frequency
translation can also be achieved. This
paper describes a balanced modulator
which closely approximates ideal per-
formance over more than an octave band-
width. Experimental results are re-
ported for a hi-phase modulator and a
frequency translator.

A single-ended modulator, of the type
shown in figure 1, consists of a 3dB
quadrature coupler with two of its
ports terminated by PIN diodes. The
diodes produce a variable reflection co-
efficient determined by their current
controlled resistance. The modulator
transfer function (M) can be expressed
in terms of the S-parameters (Sij) of
the coupler and the reflection coef-
ficient (r) of the diodes:

M(i) = S21+S24r(i)s41+s23r(i)s31

S I_’(i)
= ‘21+’2s24 41

FIG. 1 SINGLE-ENDED DIODE MODULATOR

2. BALANCED MODIJLATORS

Single-ended modulators are usually
limited in performance by diode para-
sitic (~(i)#-~(-i)), and by the di-
rectivity of the hybrid coupler (S21#O).

These limitations become quite severe

for octave bandwidth components. A
balanced configuration provides a simple
but very effective means for reducing
these effects. Figure 2 illustrates a
balanced PIN diode modulator which is
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FIG. 2 BALANCED TWO-PORT MODULATOR
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driven in a push-pull fashion. “It (:on-
sists of two single-ended modulators,
with transfer functions M(ia) and M(ib),

combined by a pair of hybrid couplers.
The transfer function for the balanced
modulator can be expressed as follows:

M’=S14M(ia)S ~l+S13M(ib)S31

❑S142(M(ia)-M(ib))

There is a maximum phase error of 5 de-
grees and a peak amplitude imbalance of
0.75dB between the O and 180 degree
states. Data for the 5-1OGHZ unit show
a maximum phase error of 2 degrees and a
peak amplitude imbalance of 0.6dB. cyJT

parable performance has been reported
for a reflection type modulator, but
only for half-octave bandwidth.

where use has been made of the 3dB quad–
rature property, S31=jS41. With a push-

pull drive, ia=-ib=i, the modulation

function becomes:

M’(i)=S142(M(i)-M(-i))

The hi-phase condition (M’ (-i)=-M’ (i.))
is then clearly attained in spite of the
limitations on the single-ended compo-
nents . Of special significance are the
relations Mt(-l)=-,M1 (l) and M’ (0)=0.

Attainment o:F.this performance depetids
on the existence of hybrid couplers
which rely on geometric symmetry for
their precise quadrature property.
Geometric symmetry is readily obtained
by using a two-wire construction, rather
than an interdigital cou ler which has

~ . Anex-an intrinsic phase error 1)
ample of the former t pe is the broad-

Yband Hopfer coupler(2 .

Thus far, only two-port modulators have
been considered. As a one-port reflec-
tive device, the balanced modulator
takes the particularly simple form
similar to a single-ended modulator.
The difference is that the diodes are
driven out of phase so that power is re-
flected to the input port. The need for
a high direc-tivity circulator to con-
vert this component into a two-port de-
vice severely limits its bandwidth. Al-
ternately. two reflective modulators can
be combi~ed
however, as
ration, the
directivity

with a hybrid coupler(3);
with a single-ended configu-
perforrnance depends on the
of the coupler.

3. BI-PHASE MODULATOR RESULTS

Basic performance of the balanced modu-
lator was demonstrated by constructing
hi-phase modulators operating in the
5-1OGHZ and 6-18GHz frequency ranges.
The 6-18GHz modulator shown in figure 3
consists of a Duroid microstrip circuit
containing fc)ur PIN diodes combined with
four Hopfer couplers. The complete unit,
including a built-in driver, measured
1.2x1.2x0.4 inches. Performance curves
for this unif are shown in figure 4.
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FIG. 4 BALANCED BI-PHASE MODULATOR
PERFORMANCE CURVES

In such wide-band applications, a varia-
tion of the hybrid coupling factor re-
sults in a modulation error, which can
be defined by E’=M’(-1)/M’(1)+1. How-
ever, for a balanced modulator the error
is reduced by a factor (N) relative to a
single-ended modulator: E!.N,lE ,

N=(S142+S132)1 (S142-S132+S122E)

~(a-jb)/(1-E/2)

where a$1412-~1312measures the amDlitude

imbalance of the hybrids and b is the
deviation from quadrature, In the case
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of a single section coupler operating
o~er an octave bandwidth (a=O.11 and
b=O) the error %s reduced by 19dB.

4. FREQUENCY TRANSLATOR RESULTS

A high-precision modulator is the criti-
cal component in a single-sideband fre-
quency translator of the type shown in
figure 5. This translator consists of a
quadrature hybrid feeding two balanced
modulators that are driven in quadrature,
and a Wilkinson combiner at the output
port . The transfer function (T) for
translation frequency (W) is given by

T(t)=S14(M’ (cosWt)+jM’(sinWt) )/~

If the modulator were ideal (M’(i)=i),
this would be a perfect translator
(T(t) ~exp(jWt)).

3dB HYB. iQ=COS(Wt) WILKINSON
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ib=SiN(wt)

T(t) =m24M’(ia) S41+w23M’(ib )S3!

FIG. 5 SINGLk-SIDEBAND FREQUENCY
TRANSLATOR

A balanced modulator eliminates all even
harmonies, including the carrier. This
result can be derived by expanding the
transfer function for a single-ended
modulator in a Fourier series:

M(i(t))=~Mn~exp(jnWt)

n

Then with ib(t)=ia(t+T/W), the balanced
modulator has the following representa-
tion:

M’(i(t) )=Sl~2~Mn~exp(jn1Jt) (1-exp(jn~))

‘2❑2,:S14 ~n?#exp(jnWt)

n (044)

The doubly-balanced translator configur-
ation removes additional terms with
n.4k-l (k.integer). That is,

T(t)=2+,Slq
4

3 Mn,~exp(jnWt)

(l+j3’,exp(!?fl’/4))/fi

=4~S143~Mn&exp(jnWt)/fi

n=zk+l

so that image sidebands are also sup-
pressed.

Experimental confirmation of these con-
clusions has been obtained. A transla-

tor, based on the 5-1OGHZ modulator des-
cribed above, was constructed and tested.
Figure 6 shows a plot of the carrier and
sideband levels of this unit relative to.
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FIG. 6 PERFORMANCE CURVES FOR
FREQUENCY TRANSLATOR

TRANSLATION FREQUENCY: O-60KHZ

the translated signal. From 4 to 10GHz,
the carrier is suppressed by more than
30dB, and the sideband is down by more
than 20dB. Carrier suppression depends
solely on the “null’ and “hi-phase” pro-
perty of the balanced modulator while
the sideband suppression is a result of
the double-balanced arrangement. These
results demonstrate the superior perfor-
mance achievable with a properly de-
signed balanced modulator.
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