

OCTAVE-BAND HIGH PRECISION BALANCED MODULATOR

Z. Adler and B. Smilowitz

General Microwave Corp., Farmingdale, N.Y. 11735

ABSTRACT

This paper describes an octave bandwidth component that closely approximates an ideal bi-phase linear modulator at microwave frequencies. PIN diodes in a balanced configuration of hybrid couplers were combined to realize the component in a microstrip circuit. Phase errors of 2 degrees or less were achieved over an octave band for a bi-phase modulator application. The modulator was also used to form a frequency translator with a minimum carrier suppression of 30dB and sideband suppression of 20dB over the 4-10GHz frequency band.

1. INTRODUCTION

An ideal bi-phase linear modulator performs the mathematical operation of multiplication between a modulating signal and an RF carrier; it thus functions as a basic RF signal processing component with a wide range of applications. Both phase and amplitude modulation are possible, and, by changing the phase at a steady rate, frequency translation can also be achieved. This paper describes a balanced modulator which closely approximates ideal performance over more than an octave bandwidth. Experimental results are reported for a bi-phase modulator and a frequency translator.

A single-ended modulator, of the type shown in figure 1, consists of a 3dB quadrature coupler with two of its ports terminated by PIN diodes. The diodes produce a variable reflection coefficient determined by their current controlled resistance. The modulator transfer function (M) can be expressed in terms of the S-parameters (S_{ij}) of the coupler and the reflection coefficient (Γ) of the diodes:

$$\begin{aligned} M(i) &= S_{21} + S_{24}\Gamma(i)S_{41} + S_{23}\Gamma(i)S_{31} \\ &= S_{21} + 2S_{24}S_{41}\Gamma(i) \end{aligned}$$

Here $i = -1$ to 1 has been used to designate the input control signal, a current or digital word for example, that selects the various modulator states.

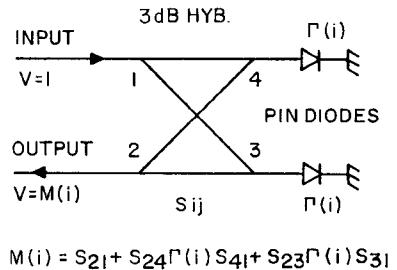


FIG. 1 SINGLE-ENDED DIODE MODULATOR

2. BALANCED MODULATORS

Single-ended modulators are usually limited in performance by diode parasitics ($\Gamma(i) \neq \Gamma(-i)$), and by the directivity of the hybrid coupler ($S_{21} \neq 0$). These limitations become quite severe for octave bandwidth components. A balanced configuration provides a simple but very effective means for reducing these effects. Figure 2 illustrates a balanced PIN diode modulator which is

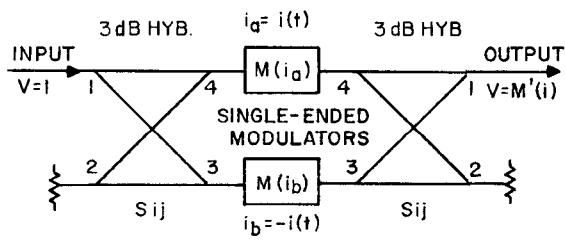


FIG. 2 BALANCED TWO-PORT MODULATOR

driven in a push-pull fashion. It consists of two single-ended modulators, with transfer functions $M(i_a)$ and $M(i_b)$, combined by a pair of hybrid couplers. The transfer function for the balanced modulator can be expressed as follows:

$$\begin{aligned} M' &= S_{14} M(i_a) S_{41} + S_{13} M(i_b) S_{31} \\ &= S_{14}^2 (M(i_a) - M(i_b)) \end{aligned}$$

where use has been made of the 3dB quadrature property, $S_{31} = jS_{41}$. With a push-pull drive, $i_a = -i_b = i$, the modulation function becomes:

$$M'(i) = S_{14}^2 (M(i) - M(-i))$$

The bi-phase condition ($M'(-i) = -M'(i)$) is then clearly attained in spite of the limitations on the single-ended components. Of special significance are the relations $M'(-1) = -M'(1)$ and $M'(0) = 0$. Attainment of this performance depends on the existence of hybrid couplers which rely on geometric symmetry for their precise quadrature property. Geometric symmetry is readily obtained by using a two-wire construction, rather than an interdigital coupler which has an intrinsic phase error⁽¹⁾. An example of the former type is the broadband Hopfer coupler⁽²⁾.

Thus far, only two-port modulators have been considered. As a one-port reflective device, the balanced modulator takes the particularly simple form similar to a single-ended modulator. The difference is that the diodes are driven out of phase so that power is reflected to the input port. The need for a high directivity circulator to convert this component into a two-port device severely limits its bandwidth. Alternately, two reflective modulators can be combined with a hybrid coupler⁽³⁾; however, as with a single-ended configuration, the performance depends on the directivity of the coupler.

3. BI-PHASE MODULATOR RESULTS

Basic performance of the balanced modulator was demonstrated by constructing bi-phase modulators operating in the 5-10GHz and 6-18GHz frequency ranges. The 6-18GHz modulator shown in figure 3 consists of a Duroid microstrip circuit containing four PIN diodes combined with four Hopfer couplers. The complete unit, including a built-in driver, measured 1.2x1.2x0.4 inches. Performance curves for this unit are shown in figure 4.

There is a maximum phase error of 5 degrees and a peak amplitude imbalance of 0.75dB between the 0 and 180 degree states. Data for the 5-10GHz unit show a maximum phase error of 2 degrees and a peak amplitude imbalance of 0.6dB. Comparable performance has been reported⁽⁴⁾ for a reflection type modulator, but only for half-octave bandwidth.

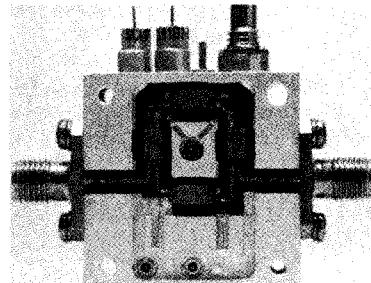


FIG. 3 MICROSTRIP CIRCUIT OF 6-18GHz BALANCED MODULATOR

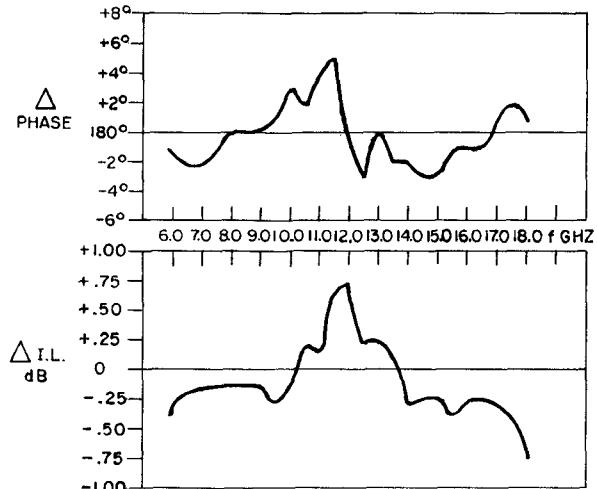
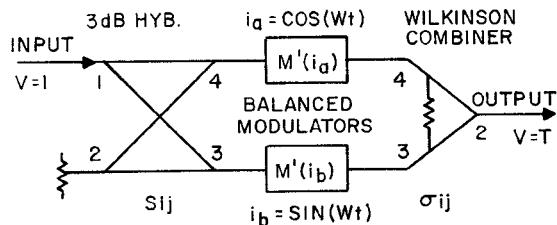


FIG. 4 BALANCED BI-PHASE MODULATOR PERFORMANCE CURVES

In such wide-band applications, a variation of the hybrid coupling factor results in a modulation error, which can be defined by $E' = M'(-1)/M'(1) + 1$. However, for a balanced modulator the error is reduced by a factor (N) relative to a single-ended modulator: $E' = N \cdot E$.

$$\begin{aligned} N &= (S_{14}^2 + S_{13}^2) / (S_{14}^2 - S_{13}^2 + S_{12}^2 E) \\ &\approx (a - jb) / (1 - E/2) \end{aligned}$$

where $a = |S_{14}|^2 - |S_{13}|^2$ measures the amplitude imbalance of the hybrids and b is the deviation from quadrature. In the case


of a single section coupler operating over an octave bandwidth ($a=0.11$ and $b=0$) the error is reduced by 19dB.

4. FREQUENCY TRANSLATOR RESULTS

A high-precision modulator is the critical component in a single-sideband frequency translator of the type shown in figure 5. This translator consists of a quadrature hybrid feeding two balanced modulators that are driven in quadrature, and a Wilkinson combiner at the output port. The transfer function (T) for translation frequency (W) is given by

$$T(t) = S_{14} (M'(cos Wt) + jM'(sin Wt)) / \sqrt{2}$$

If the modulator were ideal ($M'(i) = i$), this would be a perfect translator ($T(t) \propto \exp(jWt)$).

$$T(t) = \sigma_{24} M'(i_a) S_{41} + \sigma_{23} M'(i_b) S_{31}$$

FIG. 5 SINGLE-SIDEBAND FREQUENCY TRANSLATOR

A balanced modulator eliminates all even harmonies, including the carrier. This result can be derived by expanding the transfer function for a single-ended modulator in a Fourier series:

$$M(i(t)) = \sum_n M_n \exp(jnWt)$$

Then with $i_b(t) = i_a(t + \pi/W)$, the balanced modulator has the following representation:

$$\begin{aligned} M'(i(t)) &= S_{14} \sum_n^2 M_n \exp(jnWt) (1 - \exp(jn\pi)) \\ &= 2 * S_{14} \sum_{n \text{ (odd)}} M_n \exp(jnWt) \end{aligned}$$

The doubly-balanced translator configuration removes additional terms with $n=4k-1$ ($k=\text{integer}$). That is,

$$\begin{aligned} T(t) &= 2 * S_{14} \sum_{n \text{ (odd)}}^3 M_n \exp(jnWt) \\ &\quad (1 + j * \exp(jn\pi/4)) / \sqrt{2} \\ &= 4 * S_{14} \sum_{n=2k+1}^3 M_n \exp(jnWt) / \sqrt{2} \end{aligned}$$

so that image sidebands are also suppressed.

Experimental confirmation of these conclusions has been obtained. A translator, based on the 5-10GHz modulator described above, was constructed and tested. Figure 6 shows a plot of the carrier and sideband levels of this unit relative to

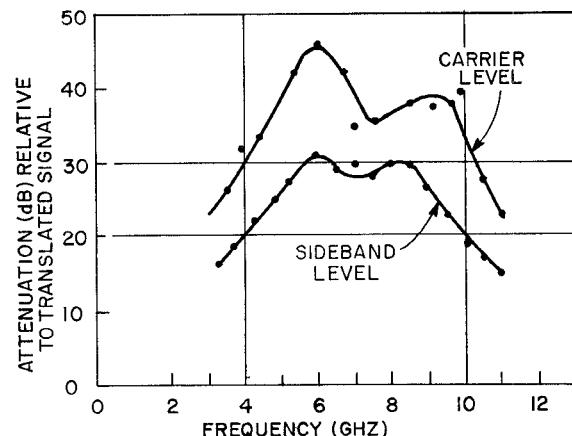


FIG. 6 PERFORMANCE CURVES FOR FREQUENCY TRANSLATOR
TRANSLATION FREQUENCY: 0-60KHz

the translated signal. From 4 to 10GHz, the carrier is suppressed by more than 30dB, and the sideband is down by more than 20dB. Carrier suppression depends solely on the "null" and "bi-phase" property of the balanced modulator while the sideband suppression is a result of the double-balanced arrangement. These results demonstrate the superior performance achievable with a properly designed balanced modulator.

ACKNOWLEDGMENTS

We wish to acknowledge P. Lenoble, who designed the drivers, and M. Tuckman, who contributed measured data.

REFERENCES

1. C. Y. Ho and L. Moser, "Symmetrical Coupler Reduces Phase Error", *Microwaves*, April 1981, pp 82-84.
2. S. Hopfer, "A Hybrid Coupler for Microstrip Configuration", *IEEE MTT-S International Symposium Digest*, 1979, pp 428-430.
3. E. Salzberg, U.S. Patent No. 4,366,454 issued Dec. 28, 1982.
4. Ch. Schieberlich, U. Goebel, and V. Beres, "Broadband Reflection-Type Phase Modulators", *IEEE MTT-S International Microwave Symposium*, 1983, pp 510-512.