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OCTAVE-BAND HIGH PRECISION BALANCED MODULATOR
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ABSTRACT

This paper describes an ogtave bandwidth
component that closely approximates an
ideal bi-phase linear modulator at mi-
crowave frequencies. PIN diodes in a
balanced configuration of hybrid coup-
lers were combined to realize the com-
ponent in a microstrip circudt. Phase
errors of 2 degrees or less were
achieved over an octave band for a
bi-phase modulator application. The
modulator was also used to form a fre-
quency translator with a minimum car-
rier suppression of 30dB and sideband
suppression of 20dB over the 4-10GHz
frequency band.

1. INTRODUCTION

An ideal bi-phase linear modulator per-
forms the mathematical operation of
multiplication between a modulating sig-
nal and an RF carrier; i1t thus func-
tions as a basic RF signal processing
component with a wide range of applica-
tions. Both phase and amplitude modu-
lation are possible, and, by changing
the phase at a steady rate, frequency
translation can also be achieved. This
paper deseribes a balanced modulator
which closely approximates ideal per-
formance over more than an octave band-
width. Experimental results are re-
ported for a bi-phase modulator and a
frequency translator.

A single-ended modulator, of the type
gshown in figure 1, consists of a 3dB
quadrature coupler with two of its
ports terminated by PIN diocdes. The
diodes produce a variable reflection co-
efficient determined by their current
controlled resistance. The modulator
transfer function (M) can be expressed
in terms of the S-parameters (Sij) of
the coupler and the reflection coef-
ficient (') of the diodes:

M(1) = 8,748,718y 1+8,5M(1)83

- 321+2324841P(i)
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Here i=-1 to 1 has been used to desig-
nate the input control signal, a cur-
rent or digital word for example, that
selects the various modulator states.
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FIG. 1 SINGLE-ENDED DIODE MODULATOR

2. BALANCED MODULATORS

Single-ended modulators are usually
limited in performance by diode para-
sitics (T(i)#-(-1)), and by the di-
rectivity of the hybrid coupler (S,7#0).

These limitations become quite severe
for octave bandwidth components. A
balanced configuration provides a simple
but very effective means for reducing
these effects. TFigure 2 illustrates a
balanced PIN diode modulator which is
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FIG. 2 BALANCED TWO-PORT MODULATOR
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driven in a push-pull fashion. It con-
sists of two single-ended modulators,
with transfer functions M(i,) and M(iy),

combined by a pair of hybrid couplers.

The transfer function for the balanced

modulator can be expressed as follows:
. .

M _SlHM(la)S

u1+813M<lb)S31

e 2emes .
=51y (M(la)—M(lb))

where use has been made of the 3dB quad-
rature property, 537=jSy;. With a push-

pull drive, iz=-ip=i, the modulation
function becomes:

M'(i)=S9, 2(M(1)-M(-1))

The bi-phase condition (M'(-1)=-M'(i))
is then clearly attained in spite of the
limitations on the single-ended compo-
nents. Of special significance are the
relations M'(-1)=-M'(1) and M'(0)=0.
Attainment of this performance depends
on the existence of hybrid couplers
which rely on geometric symmetry for
their precise quadrature property.
Geometric symmetry is readily obtained
by using a two-wire construction, rather
than an interdigital coupler which has
an intrinsic phase error(l). An ex-
ample of the former type is the broad-
band Hopfer coupler(?y.

Thus far, only two-port modulators have
been considered. As a one-port reflec-
tive device, the balanced modulator
takes the particularly simple form
similar to a single-ended modulator.

The difference is that the diodes are
driven out of phase so that power is re-
flected to the input port. The need for
a high directivity circulator to con-
vert this component into a two-port de-
vice severely limits its bandwidth. Al-
ternately, two reflective modulators can
be combined with a hybrid coupler(3);
however, as with a single-ended configu-
ration, the performance depends on the
directivity of the coupler.

3. BI-PHASE MODULATOR RESULTS

Basic performance of the balanced modu-
lator was demonstrated by constructing
bi-phase modulators operating in the
5-10GHz and 6-18GHz frequency ranges.
The 6-18GHz modulator shown in figure 3
consists of a Duroid microstrip circuit
containing four PIN dicdes combined with
four Hopfer couplers. The complete unit,
including a built-in driver, measured
1.2%x1.2x%0.4 inches. Performance curves
for this unit are shown in figure 4.

There is a maximum phase error of 5 de-
grees and a peak amplitude imbalance of
0.75dB between the 0 and 180 degree
states. Data for the 5-10GHz unit show
a maximum phase error of 2 degrees and a
peak amplitude imbalance of 0.6dB. Cqgmc
parable performance has been reported
for a reflection type modulator, but
only for half-octave bandwidth.

FIG. 3 MICROSTRIP CIRCUIT OF 65-18GHz
BALANCED MODULATOR
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FIG. 4 BALANCED BI-PHASE MODULATOR

PERFORMANCE CURVES

In such wide-band applications, a varia-
tion of the hybrid coupling factor re-
sults in a modulation error, which can
be defined by E'=M'(-1)/M'(1)+1. How-
ever, for a balanced modulator the error
is reduced by a factor (N) relative to a
single-ended modulator: E'=N.E .

N=(Sq,2+S132)/ (51 2-51 324819 °F)
% (a-3jb)/(1-E/2)

where aﬂsluF—El3Fmeasures the amplitude

imbalance of the hybrids and b is the
deviation from quadrature. In the case
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of a single section coupler operating
oyer an octave bandwidth (a=0.11 and
b%0) the error is reduced by 19dB.

4. FREQUENCY TRANSLATOR RESULTS

A high-precision modulator is the criti-
cal component in a single-sideband fre-
quency translator of the type shown in
figure 5. This translator consists of a
quadrature hybrid feeding two balanced
modulators that are driven in quadrature,
and a Wilkinson combiner at the output
port. The transfer function (T) for
translation frequency (W) is given by

T(t)=Slq(M'(cosWt)+jM'(sinWt))/(?

If the modulator were ideal (M'(i)=1),
this would be a perfect translator
(T(t) x exp(jWt)).
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FIG. 5 SINGLE-SIDEBAND FREQUENCY
TRANSLATOR

A balanced modulator eliminates all even
harmonies, including the carrier. This
result can be derived by expanding the
transfer function for a single-ended
modulator in a Fourier series:

M(1(t))=) Mnaexp(init)
n

Then with ip(t)=i (t+T/W), the balanced
modulator has the following representa-
tion:

M'(1(£))=812)Mnyexp(init) (1-exp(3nT)

n
=2*814%Zgn*exp(jnWt)
n{odd)

The doubly-balanced translator configu-
ration removes additional terms with
n=ik-1 (k=integer). That is,

T(t)=2*81u3 Mngexp (jnWt)
niod)
(1+3%exp(Sng/u)) /{2

:uﬁ81432ﬁn*exp(jnWt)/J3
V\:z_kﬂ

so that image sidebands are also sup-
pressed.

Experimental confirmation of these con-
clusions has been obtained. A transla-
tor, based on the 5-10GHz modulator des-
cribed above, was constructed and tested.
Figure 6 shows a plot of the carrier and
sideband levels of this unit relative to
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FIG. 6 PERFORMANCE CURVES FOR
FREQUENCY TRANSLATOR
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the translated signal. From 4 to 10GHz,
the carrier is suppressed by more than
30dB, and the sideband is down by more
than 204B. Carrier suppression depends
solely on the "null' and "bi-phase" pro-
perty of the balanced modulator while
the sideband suppression is a result of
the double-balanced arrangement. These
results demonstrate the superior perfor-
mance achievable with a properly de-
signed balanced modulator.
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